Queens College Department of Mathematics

Final Examination $2\frac{1}{2}$ Hours

Mathematics 142 Fall 2016
<u>Instructions</u>: Answer ALL Questions. Show ALL Work.

1. Evaluate the following integrals without the use of a calculator:

i)
$$\int \tan x \ln(\cos x) \, dx$$

ii)
$$\int_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx$$

iii)
$$\int_0^1 \frac{e^x}{1 + e^{2x}} dx$$

2. Using the definition of a definite integral as the limit of the Riemann sum, evaluate

$$\int_0^2 (2x - x^3) \, dx$$

Hint

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \qquad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \qquad \sum_{i=1}^{n} i^3 = \left[\frac{n(n+1)}{2}\right]^2$$

3. If
$$f(x) = \int_0^{\sin x} \sqrt{1 + t^2} dt$$
 and $g(y) = \int_3^y f(x) dx$, find $g''(\pi/6)$.

4. If
$$f(x) = \ln x + \tan^{-1} x$$
, find $(f^{-1})'(\pi/4)$.

5. Find
$$\frac{dy}{dx}$$
:

i)
$$y = e^{\cos x} + \cos(e^x)$$

ii)
$$y = \tan^{-1} \left(\sin^{-1} \sqrt{x} \right)$$

iii)
$$y = \ln(\sin x) - \frac{1}{2}\sin^2 x$$

6. Use logarithmic differentiation to find $\frac{dy}{dx}$ if

$$y = \frac{(x^2 + 1)^4}{(2x + 1)^3 (3x - 1)^5} \ .$$

7. Find the exact length of the curve

$$y = \frac{x^4}{16} + \frac{1}{2x^2}$$
, where $1 \le x \le 2$.

8. The region R enclosed by the curves y = x and $y = x^2$ is rotated about the line x = -1. Find the volume of the resulting solid.

9. Solve the initial-value problem

$$(1 + \cos x) \frac{dy}{dx} = (1 + e^{-y}) \sin x$$
, where $y(0) = 0$.

10. The half-life of cesium-137 is 30 years. Suppose we have a 100-mg sample.

- i) Find the mass that remains after t years.
- ii) How much of the sample remains after 100 years?
- iii) After how long will only 1 mg remain?