

1

Spin-Orbit Charge Transfer & Nitrosation of Guanine Radical Cations by Nitric Oxide — Mechanisms, Kinetics, and Dynamics

Jianbo Liu

Department of Chemistry & Biochemistry CUNY Queens College and Graduate Center

ACS Fall 2024, Denver, August 21 2024

Biological Relevance of G^{•+} + •**NO**

Formation of **9MG**^{•+}(a guanosinemimicking model compound) represents a consequence of DNA oxidative damages upon *ionization* and oxidation •NO, a precursor to reactive nitrogen species (RNS) in biological systems, participates directly in numerous processes including enhancing DNA radiosensitivity in *ionizing radiation*-based radiotherapy.

Spin Dynamics of 9MG^{•+} + •NO

<u>Singlet</u> (population: 25%) ${}^{OS}[9MG^{\bullet+}(\uparrow) \cdots^{\bullet} NO(\downarrow) - 9MG^{\bullet+}(\downarrow) \cdots^{\bullet} NO(\uparrow)]/\sqrt{2}$ (or ${}^{CS}[9MG(\uparrow\downarrow) \cdots^{+}NO]$ with charge transfer) $\frac{\text{Triplet}}{\mathbf{T_0:}} (75\%)$ $\mathbf{T_0:} [9MG^{\bullet+}(\uparrow) \cdots^{\bullet} \text{NO}(\downarrow) + 9MG^{\bullet+}(\downarrow) \cdots^{\bullet} \text{NO}(\uparrow)]/\sqrt{2}$ $\mathbf{T_+:} 9MG^{\bullet+}(\uparrow) \cdots^{\bullet} \text{NO}(\uparrow)$ $\mathbf{T_-:} 9MG^{\bullet+}(\downarrow) \cdots^{\bullet} \text{NO}(\downarrow)$

Influences of Spin Dynamics on Reaction

Critical processes: ion-molecule collision, ^{1,OS}precursor, ³precursor, internal conversion, intersystem crossing **Products**: charge transfer and [X-NO-9MG]⁺

Benny and Liu, J. Chem. Phys, 2023, 159, 085102

Rationalization of Extra Threshold Energy in a Frank-Condon Scheme

A qualitative PES at infinite reagent separation for (blue) $9MG^{\bullet+} + {}^{\bullet}NO(X^{2}\Pi)$ vs. (red) $9MG + NO^{+}(X^{1}\Sigma^{+})$

2D-Surface Crossing toward Spin-Orbit Charge Transfer

Experiment 2: Nitrosation at Short-range Interaction and Different Spin States

Monitor dynamics, as a function of collision energy, from ^{1,3}precursor complexes to various covalent adducts.

Nitrosation Product Cross Sections

 The first channel is exothermic with product heat release > 0.65 eV (calibrated using water-dissociation in nitrosation of hydrated 9MG^{•+}, see Fig. b)

2) The second channel is endothermic with product ΔH of approximate +0.6 eV

Numerous possible singlet reaction pathways/products predicted by DFT

Identify Product Structures

Two possible exothermic products:

 $^{1,CS}\ensuremath{[7-NO-9MG]^+}\xspace$ and $^{1,CS}\ensuremath{[5-NO-9MG]}\xspace$

of which ^{1,CS}[7-NO-9MG]⁺ is the most probable

Only product with endothermicity ~0.6 eV: ³[8-NO-9MG]⁺

Conclusions

Guided-ion beam mass spectrometry measurement of kinetic-energy resolved reactions, combined with electronic theory, advances the chemistry assessment between DNA nucleobase radicals and •NO:

Among > 30 potential reaction structures, we identified ${}^{1,CS}[7-NO-G]^+$ as the only exothermic product and ${}^{3}[9MG^{+}(\uparrow)\cdots(\uparrow)^{+}NO]$ precursor that is responsible for the formation of endothermic ${}^{3}[8-NO-G]^+$ at low energies and for spin-orbit charge transfer at high energies.

Biological implications

Synergistic damage of nucleobase in the presence of ionization, one-electron oxidation, and nitrosation.

Acknowledgements

Jonathan Benny* (CUNY PhD, ion-molecule scattering measurement) May Myat Moe (CUNY PhD) Wenjing Zhou (CUNY PhD) Prof. Toru Saito* (Open-shell PES, Hiroshima City University, Japan)

14